Python Native Data Types

 


1. Numbers

Python supports various numeric types:

  • Integers (int): Whole numbers (e.g., 10, -3)
  • Floating-point numbers (float): Decimal numbers (e.g., 3.14, -2.71)
  • Complex numbers (complex): Numbers with a real and imaginary part (e.g., 2+3j)

Operations on Numbers:

  1. Arithmetic: +, -, *, /, // (floor division), % (modulo), ** (power)

    a = 10
    b = 3
    print(a + b)  # 13
    print(a / b)  # 3.333
    print(a // b) # 3
    print(a % b)  # 1
    print(a ** b) # 1000
    
  2. Type Conversion:

    • int(), float(), complex()
    print(int(5.7))      # 5
    print(float(3))      # 3.0
    print(complex(2, 3)) # (2+3j)
    
  3. Built-in Functions:

    • abs(x): Returns absolute value.
    • pow(x, y): Power calculation (x^y).
    • round(x, n): Rounds to n decimal places.
    • divmod(x, y): Returns quotient and remainder.
    print(abs(-7))         # 7
    print(pow(2, 3))       # 8
    print(round(3.14159, 2)) # 3.14
    print(divmod(10, 3))   # (3, 1)
    

2. Lists

A list is an ordered, mutable collection that can store heterogeneous items.

Operations on Lists:

  1. Creating Lists:

    lst = [1, 2, 3, 'a', 'b', 'c']
    
  2. Accessing Elements:

    • Indexing: lst[0] (first element)
    • Slicing: lst[1:4] (elements from index 1 to 3)
  3. List Methods:

    • append(x): Adds item at the end.
    • extend(iterable): Extends list with items.
    • insert(i, x): Inserts x at position i.
    • remove(x): Removes the first occurrence of x.
    • pop([i]): Removes item at position i (last by default).
    • index(x): Returns index of x.
    • count(x): Counts occurrences of x.
    • sort(): Sorts the list.
    • reverse(): Reverses the list.
    lst = [10, 20, 30]
    lst.append(40)     # [10, 20, 30, 40]
    lst.insert(1, 15)  # [10, 15, 20, 30, 40]
    lst.pop()          # [10, 15, 20, 30]
    lst.sort()         # [10, 15, 20, 30]
    

3. Tuples

A tuple is an ordered, immutable collection of items.

Characteristics:

  • Immutable: Once created, cannot be changed.
  • Faster than lists for iteration.

Creating and Accessing Tuples:

tup = (1, 2, 3, 'a')
print(tup[0])      # 1
print(tup[1:3])    # (2, 3)

Tuple Methods:

  • count(x): Counts occurrences of x.
  • index(x): Returns index of x.

4. Sets

A set is an unordered, mutable collection with unique elements.

Operations on Sets:

  1. Creating Sets:

    s = {1, 2, 3, 3}  # {1, 2, 3}
    
  2. Set Methods:

    • add(x): Adds element x.
    • update(iterable): Adds multiple elements.
    • remove(x): Removes x; raises an error if not found.
    • discard(x): Removes x; no error if not found.
    • pop(): Removes and returns an arbitrary element.
    • clear(): Clears the set.
    • union(): Combines sets.
    • intersection(): Finds common elements.
    • difference(): Finds differences.
    s1 = {1, 2, 3}
    s2 = {3, 4, 5}
    print(s1.union(s2))       # {1, 2, 3, 4, 5}
    print(s1.intersection(s2)) # {3}
    

5. Dictionary

A dictionary is an unordered collection of key-value pairs.

Creating Dictionaries:

d = {'name': 'Alice', 'age': 25, 'city': 'NY'}

Dictionary Methods:

  • keys(): Returns keys.
  • values(): Returns values.
  • items(): Returns key-value pairs.
  • get(key): Returns value for key.
  • update(dict): Updates dictionary.
  • pop(key): Removes key and returns value.
  • clear(): Clears dictionary.
d = {'name': 'Alice', 'age': 25}
print(d.keys())           # dict_keys(['name', 'age'])
print(d.get('name'))      # Alice
d.update({'city': 'NY'})  # {'name': 'Alice', 'age': 25, 'city': 'NY'}
d.pop('age')              # Removes 'age'

6. Strings

A string is an immutable sequence of characters.

String Operations:

  • Concatenation: +
  • Repetition: *
  • Indexing and Slicing:
    s = "hello"
    print(s[0])       # h
    print(s[1:4])     # ell
    

String Methods:

  1. Case Conversion:
    • upper(), lower(), capitalize(), title(), swapcase()
  2. Searching:
    • find(sub), index(sub), count(sub)
  3. Modification:
    • replace(old, new), strip(), lstrip(), rstrip()
  4. Splitting and Joining:
    • split(), join(iterable)
  5. Validation:
    • isalpha(), isdigit(), isspace(), isalnum()
    s = "hello world"
    print(s.upper())            # HELLO WORLD
    print(s.replace("world", "Python"))  # hello Python
    print(s.split())            # ['hello', 'world']
    print("-".join(['a', 'b'])) # a-b
    

This overview provides a clear understanding of Python's native data types, operations, and methods. Let me know if you need further explanations or code examples!

Comments

Popular posts from this blog

Error Detection in Data Link Layer

Transmission impairments – Attenuation, Distortion, Noise. Multiplexing – Frequency division, Time division, Wavelength division

DSA LAB 1 Program